A. D’Hooge, L. Bigo, K. Déguernel, N. Martin (2024). Guitar chord diagram suggestion for Western popular music. Sound and Music Computing.
K. Déguernel, P. Ericson, B. Bacot (2024). Music generative AI as a pharmakon. AI Music Studies Conference. (Extended abstract)
D. Dalmazzo, K. Déguernel, B. L. T. Sturm (2024). The Chordinator: Modeling Music Harmony By Implementing Transformer Networks and Token Strategies. EvoMUSART
B. L. T. Sturm, K. Déguernel, R. S. Huang, A. Holzapfel, O. Bown, N. Collins, J. Sterne, L. Cros Vila, L. Casini, D. Dalmazzo, E. A. Drott, O. Ben-Tal (2024). MusAIcology: AI Music and the Need for a New Kind of Music Studies, SocArXiv
D. Dalmazzo, K. Déguernel, B. L. T. Sturm (2023). The Chordinator: Chord progression modeling and generation using transformers. International Society for Music Information Retrieval Conference. (Late breaking demo)
A. D’Hooge, L. Bigo, K. Déguernel (2023). Modeling Bends in Popular Music Guitar Tablatures. International Society for Music Information Retrieval Conference
K. Déguernel, G. Cecchetti, S. A. Herff (2023). Emotion, Motion, and Abstract Notions: Insights in the role of imagination in professional musicians practices from semi-guided interviews. International Conference on Music Perception and Cognition (Extended abstract)
K. Déguernel, B. L. T. Sturm (2023). Bias in Favour or Against Computational Creativity: A Survey and Reflection on the Importance of Socio-cultural Context in its Evaluation. International Conference on Computational Creativity
K. Déguernel, B. L. T. Sturm, H. Maruri-Aguilar (2022). Investigating the relationship between liking and belief in AI authorship in the context of Irish traditional music. CREAI 1st Workshop on Artificial Intelligence and Creativity
(Supplementary material)
K. Déguernel, M. Giraud, R. Groult, S. Gulluni (2022). Personalizing AI for co-creative music composition, from melody to structure. Sound and Music Computing Conference
S. A. Herff, L. Taruffi, G. Cecchetti, K. Déguernel (2021). Music influences vividness and content of imagined journeys in a directed visual imagery task. Scientific Reports, 11:15990
A. Parmentier*, K. Déguernel*, C. Frei (2021). A modular tool for automatic SoundPainting query recognition and music generation in Max/MSP. Sound and Music Computing Conference
(Supplementary material)
S. A. Herff, L. Taruffi, G. Cecchetti, K. Déguernel (2021). Empirical characterisation of the effect of music on imagination. International Conference on Music Perception and Cognition (Extended abstract)
C. Finkensiep, K. Déguernel, M. Neuwirth, M. Rohrmeier (2020). Voice-leading schema recognition using rhythm and pitch features. International Society for Music Information Retrieval Conference
K. Déguernel, E. Vincent, J. Nika, G. Assayag, K. Smaïli (2019). Learning of hierarchical temporal structures for guided improvisation. Computer Music Journal, 43:2
(Supplementary material)
K. Déguernel, E. Vincent, G. Assayag (2018). Probabilistic factor oracles for multidimensional machine improvisation. Computer Music Journal, 42:2
(Supplementary material)
D. Di Carlo, A. Liutkus, K. Déguernel (2018). Interference reduction on full-length live recordings. IEEE International Conference on Acoustics, Speech and Signal Processing
J. Nika, K. Déguernel, A. Chemla-Romeu-Santos, E. Vincent, G. Assayag (2017). DYCI2 agents: merging the “free”, “reactive” and “scenario-based” music generation paradigms. International Computer Music Conference
K. Déguernel, J. Nika, E. Vincent, G. Assayag (2017). Generating equivalent chord progressions to enrich guided improvisation: application to Rhythm Changes. Sound and Music Computing Conference
D. Di Carlo, K. Déguernel, A. Liutkus (2017). Gaussian framework for interference reduction in live recordings. Audio Engineering Society Conference on Semantic Audio
K. Déguernel, E. Vincent, G. Assayag (2016). Using multidimensional sequences for improvisation in the OMax paradigm. Sound and Music Computing Conference
(Supplementary material)
M. Giraud, K. Déguernel, E. Cambouropoulos (2014). Fragmentations with pitch, rhythm and parallelism constraints for variation matching. International Symposium of Computer Music Multidisciplinary Research